朴素贝叶斯算法
什么是naive bayes 朴素贝叶斯 naive bayes,是一种概率类的机器学习算法,主要用于解决分类问题 为什么被称为朴素贝叶斯? 为什么被称为朴素,难道仅仅是因为贝叶斯很天真吗?实际上是因为,朴素贝叶斯会假设数据属性之间具有很强的的独立性。即该模型中的所有属性彼此之间都是独立的,改变一个属性的值,不会直接影响或改变算法中其他的属性的值 贝叶斯定理 了解朴素贝叶斯之前,需要掌握一些概念才可继续 条件概率 Conditional probability:在另一个事件已经发生的情况下,另外一个时间发生的概率。如,==在多云天气,下雨的概率是多少?== 这是一个条件概率 联合概率 Joint Probability:计算两个或多个事件同时发生的可能性 边界概率 Marginal Probability:事件发生的概率,与另一个变量的结果无关 比例 Proportionality 贝叶斯定理 Bayes' Theorem:概率的公式;贝叶斯定律是指根据可能与事件的先验概率描述了事件的后验概率 边界概率 边界概率是指事件发生的概率,可以认为是无条件概率。不以另一个事件为条件;用公式表示为 $P(X)$ 如:抽到的牌是红色的概率是 $P(red) = 0.5$ ; 联合概率 联合概率是指两个事件在同一时间点发生的可能性,公式可以表示为 $P(A \cap B)$ A 和 B 是两个不同的事件相同相交,$P(A \and B)$ $P(A,B)$ = A 和 B 的联合概率 概率用于处理事件或现象发生的可能性。它被量化为介于 0 和 1 之间的数字,其中 0 表示不可能发生的机会,1 表示事件的一定结果。 如,从一副牌中抽到一张红牌的概率是 $\frac{1}{2}$。这意味着抽到红色和抽到黑色的概率相同;因为一副牌中有52张牌,其中 26 张是红色的,26 张是黑色的,所以抽到一张红牌与抽到一张黑牌的概率是 50%。 而联合概率是对测量同时发生的两个事件,只能应用于可能同时发生多个情况。例如,从一副52张牌扑克中,拿起一张既是红色又是6的牌的联合概率是 $P(6\cap red) = \frac{2}{52} = \frac{1}{26}$ ;这个是怎么得到的呢?因为抽到红色的概率为50%,而一副牌中有两个红色6(红桃6,方片6),而6和红色是两个独立的概率,那么计算公式就为:$P(6 \cap red) = P(6) \times P(red) = \frac{4}{52} \times \frac{26}{52} = \frac{1}{26}$...